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INTRODUCTION

Analysis and experimental evaluation of the aerodynamics of a subsonic

VSTOL .iet in cross-flow has been a major focus of a segment of the technical

community. cf., references [1-7]. Figure 1 is a schematic illustration of

the basic geometry. The fundamental differences in the cross-flow velocity

field immediately adjacent to plane of injection of the VSTOL jet, Z = 0 in

- Figure 1, and a solid cylinder of the same diameter, is evident in the oil-

flow streakline data of McMahan and Mosher [8], see Figure 2. Figure 3, a

close-up view of similar data obtained at O.N.E.R.A., and referenced by

Margason and Fearn [9], clearly illustrates an entrainment mechanism on the
wake side of the jet, with the indication of localized reversal of the cross-

flow velocity component. In the farfieldwell downstream of the plane Z = 0,

and referenced in the curvilinear coordinate system XI , Figure 1, the char-

acteristic "horseshoe" isovel distribution for u, and secondary vortex

structure for u2 and u3 is well documented. Figure 4 summarizes the data of

Kamotani and Greber [10], as a typical example.

Much less is known regarding the interaction between the let and the

cross-flow in the nearfield, i.e., in the region 0 < Z/D < 2.0. Fearn and

Weston's [11] correlation of experimental data on the trajectory of the jet

centerline. Flqure 5, confirms the absence of data on Z/D < 10. Fearn et.al.

[12) recently report a compilation of limited data, for circular cross-section

VSTOL jets at X = 4 and X = 8, as obtained using a pitot-stattc pressure rake

on the region 1.0 < Z/0',,3.0. Fiqure 6 summarizes the measurement of the

velocity component rouqhly parallel to the Z axis at Z/D = 1.0 and Z/D = 3.0.

These data indicate some entrainment from the wake at Z/D = 3.0, but none is

evident in the data at Z/D = 1.0. Figure 7 contains measured velocity vector

distributions in the X-Y plane at the same Z/D stations. Neither wake

"- entrainment nor secondary vortex structure is indicated at Z/D = 1.0.

Limited entrainment is evident at Z/D = 3.0, but the data Is too sparse to

* -confirm that the secondary vortex has been initiated.

The purpose of this study was to expand and refine the three-dimensional

Parabollc Navier-Stokes aloprlthm, reported by Baker, et.al. F131, and to

assess factors controllina prediction of the near-field flow development of

a VSTOL jet in cross-flow at A = 8. The results of this study are reported

herein.

.'. ° ..
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Figure .3. 011 Flow Streaklines For A Circular VSTOL Jet,

From Margason And Fearn 19].
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Figure 5 Similitude For Circular Jet Centerlfne Trajectory,

From Fearn And Weston [11].
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~Figure 6. Experimental Measurement of VSTOL Jet Velocity Distributions,

:!: Z/D - 1.0 and Z/D - 3.0, Y/D =0., from Fearn and Benson [12J.
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Figure 7. Experimental Measurement of VSTOL Jet Transverse Plane Velocity

Distributions, from Fearn and Benson [12].
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THEORETICAL MODEL

Three-Dimensional Parabolic Navier-Stokes Equations

The 3DPNS equation set is a simplification of the steady, three-dimensional

time-averaged Navier-Stokes equations. In Cartesian tensor notation and

employing superscript tilde and bar to denote mass-weighted and conventional

time-averaging, respectively [14], the conservation equation form for an

Isoenergetic fluid is

Llui)= ax OO [Pi + .+ Puiu - &iI 0 (2)

L(pk) a -- Ok + (Ck 1 - 6 ) 2k

+ Piij Z + P o= (3)

aL(c) UOjI + Ck ae C1 uu

+-C
2  p~ 02

+ C2 0 (4)

In equations 1-2j is (constant) density, 0 is the mean velocity vector,

SIs pressure, tS6 is the Kronecker delta. The Stokes stress tensor is

defined in terms of the Reynolds number Re as

-aJ = 7 (6 " i 6ljEkk)/Re (5)

and P i s the Reynolds stress tensor. The fluid kinematic viscosity is

O, and Etj is the mean flow strain rate tensor

6

7 . . . . . . . . . .
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- (6)a5i

Equations 3-4 are the transport equations for turbulent kinetic energy

and isotropic dissipation function, as obtained using the closure model of

Launder, Reece and Rodi [15] for the pressure-strain and triple correlations,

and

k u i u i (7)

ii
£-25 [5uji auT 1 (8)
e 3 [-X- ax~ k 6jk

The various coefficients Cc' are model constants, Hanjalic and Launder [16).

The parabolic Navier-Stokes equation set is derived from equations 1-4

assuming the ratio of extremum transverse mean velocity component to down-

stream (axial) component is less than unity and that: (I.) the downstream

velocity component suffers no reversal, (2.) diffusive transport processes

in the downstream direction are higher-order, hence negligible, and

(3.) the overall elliptic character of the parent three-dimensional Navier-

Stokes equation is enforced through construction of a suitable pressure field.

Viewing Figure 1 for the VSTOL jet problem, the x1 (curvilinear) coordinate

defines the predonflnant mean flow direction with scalar velocity component 1

of order unity, i.e., 0(1). Hence, assume 0(a2) - 0(6) - O(U3) and 0(6)

< 0(1). Then, the continuity equation 1 confirms that the downstream

variation in 01 must be of order equal to appropriate transverse plane

variations of 02 and U; hence, for a- f0I). a - 6

Determination of the relative order of terms in the Navier-Stokes equations

1-4 is-straightforward, cf. reference (17]. The 3DPNS form denoted LP(.),

for the Ui momentum equation is

LP( aj) 0~... a~ a, + -ii + 2-[U0 al 2j
axj Di 3X X2L

+ iL uu - &13] 0--~ (9)

7
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Should xj correspond to a curvilinear coordinate description,the derivatives
expressed in equation 9 become the covariant derivative. The order of
pressure variation in the transverse plane is determined by the first order
terms appearing in equation 2 written on a2 and 03 . Retaining the higher-

order convection and laminar diffusion terms for generality, the 3DPNS form

for both transverse momentum equations is [17],

+)=- + + axa ui-*- = 0 (10)

which defines the 3DPNS limited index summation convention, 1 < (i,j) < 3,
2 < I < 3. Equation 10 is an elliptic boundary value specification for

pressure distributions in the transverse plane. The pressure field that

satisfies this Poisson equation is resolved into the complementary and

particular solutions.

P(X) Pc(Xi) + pp(X1 ) (11)

The complementary pressure is the solution to the homogeneous form of

equation 10. The particular pressure p p satisfies equation 10, subject to

homogeneous Dirichlet boundary conditions on boundary segments where pc is
known. The 3DPNS form for equations 3-4 is

L,(k) - k) + a r u V Ik
axi i F [P(k e~ 9 - I U ax9

au
+ O-, + 5C 0 (12)ax9.

LP(e) -L ( O) + u 1ax1  axi EC 19 aX9

.,C.""" u'u @)  +' C2  • (13)l-.; +£: '.. + C 1 + C

8
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With determination of equation 10 as governing first-order phenomena,
it is necessary to retain the 0(S) transverse momentum equations to

permit determination of U X, Retaining the highest two orders of terms, the

corresponding 0(6) transverse momentum equations are

+ P 2,k U P k l: 0
+ a + + -075 + 56 0 (14)

Equation 12 employs the additional limited index 2 < k < 3. The middle two
terms in the second bracket are 0(1), while the remaining terms are all 0(6).

As a consequence of using equation 14, it becomes necessary to enforce the
first-order effects of the continuity equation 1 directly on its solution.
The theoretical concept is to* enforce a measure of the continuity equation

(solution) as a differential constraint on solution of the 0(6) transverse

momentum equations 14. This solution measure is chosen as the harmonic

function *(x), the solution to the Poisson equation

LPO i) = 0 (15)

The boundary conditions for € are homogeneous Dirichlet everywhere at farfield.

Reynolds Stress Closure Model for 3DPNS
A closure model for the kfnematic Reynolds stress -- U, appearing in

equations 9-13 is required. A stress-strain rate constitutive equation yields
the kinematic form [17],

"-u- =-kajj + C Eij+ C2C k + ... (16)

wkE " 2 ik -k

where Ei is the symmetric mean flow strain-rate tensor given in equation 6.
Retaining terms of the first two orders of significance,the 3DPNS form for
the Reynolds stress tensor is

9
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C~k- cc~.[~j2 p ~11 __

Clk - CZ + Iauii]1:

CA - CzC4. U £ L3

_U C - __ 2

k 3 _C - C

,u * - %Z.-'53 Al

IX2 (aX1  aX2 j2

-u~ui U iV~ - + 22_

3--

equaion 7I ; theX 3 (17)

Finite Element Solution Algorithm

The 3DPNS equation system has been identified for the dependent variable

set qj E) - {q)l (a,, D2, 93, .~jT Tegoverning system includes

initial vletrthtprisasaemrhnprcde.Equation 10
is an elliptic boundary value problem with parametric initial-value dependence.
The continuity equation 1 solution becomes recast and utilized as a differential

The generalized form for the 3DPNS equation set is,

LP(qj) - 2~- (5 91qj) + 2- [Ptqj + fjlJ+S *O- (18)

where f~ and s~ are specified nonlinear functions of their arguments as
determined by the index J. The solution domain Q~ is defined as the region

Z> 0 in Figure 1.

10
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The finite element numerical solution algorithm for equation 16 defines
- h

the approximation q i(xjVxi), to the (unknown) exact solution qj(xg, xi),

as

q](x, x) qh(x x) = U qe(x, XI) (19)

Planes Z - C are discretized into a finite element distribution and in each

finite element R2, the elemental approximation is
e

e )T
q!( x1) {N --- Q(x)e (20)

in equations 19-20, j(J) is a free index denotitng members of {q h}, and
sub- or superscript e denotes pertaining to the eth finite element, 1e R2

x xi. The elements of the row matrix [Nk(x,))T are linear (k 1 be
polynomials on xg, 2 < k < 3, spanning triangles.

The finite element algorithm requires the generated error LP(q ) to be
horthogonal tothe functions {Nk } employed to define qj. In addition, the

discrete approximation LP( h) to the continuity equation is enforced as a

differential constraint on L 6 (aah).  The theoretical statement of the finite

element solution algorithm is then

f,2{Nk}LP(q)d " + fR2V{Nk}LP(ph)d = {01 (21)

Equation 21 defines a system of ordinary differential equations written

in the jet direction parallel to x in the form

[C]{QJ}o + [U]{QJ} + [FLJJ{QL} + (SJ} = {0} (22)

Using the trapezoidal integration rule,

{FJ- {J}J+l {QJ}J " - [{QJIj+ + {}]l ) 0 (23)

and substituting equation 22 defines a system of nonlinear algebraic equations

for determination of the elements of {QJ(xi)}. The Newton iteration algorithm

for equation 23 is

": Ii

, . . .
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[J(FJ)JP {6QJP+l p - {FJ}+ (24)

J+l J+l J+l

and

(QJ1i++l {Qjlp+i + {SQJ1P~ (25)

Additional details on the algorithm are given in reference [17]. The
:..1 algorithm is operational in the COMOC:3DPNS computer program (18].

12
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DISCUSSION AND RESULTS

Problem Specification

The analysis of a VSTOL jet In cross-flow, using the 3DPNS computational

simulation, requires specification of the following:

a) Solution domain extent, Q = R2 x x,

b) Boundary conditions for qh(x) on a = aR x x,

h
c) Initial conditions for qi (xi) on o= R2 x xi (0)

d) Estimation of the x.1 pressure gradient for the 01 momentum equation.

Recalling Figure 1, the solution domain is the region Z > 0, and of sufficient

lateral extent to permit specification of boundary conditions corresponding to

the imposition of cross-flow. Since the plane Y = 0 is a plane of symmetry,

only one-half of the physical problem need be discretized. Figure 8a) is a

sketch of the 3DPNS domain 9, denoted by vertex array A-B- C-D and including

the region Z > 0. Since for A - 8, the jet axis does not exhibit significant

curvature on 0 < Z/D < 5, Figure 5, the 3DPNS coordinate system xi is coin-

cident with the laboratory reference frame X,Y,Z. The 3DPNS solution is

marched parallel to the xI (Z) axis.

-"Since the 3DPNS equation system is an elliptic boundary \tlue description

in the x2- x3 plane, A-B-C-Din Figure 8a), a boundary condition statement
h

is required for every member of qi (x1, xx2). On D-A,the symetry plane,

each dependent variable is assumed to exhibit a vanishing normal derivative,

ie., 3qi/3x2 - 0 on D-A. Boundary segment A-B corresponds to the upstream

cross-flow boundary, whereupon G 2 - U.(-j), and k and c are specified as a

function of location within the boundary layer assumed attached to the xz- x 3

plane. Both 91 and U3 are assumed to exhibit vanishing normal derivatives on

A-B.. Boundary segment B-C is assumed sufficiently remote from the jet thatthe

onset flow Uo (-J) proceeds unaltered parallel to B-C. All other dependent

variables are assumed to exhibit vanishing normal derivatives, specifically

including as, the computed non-zero level of which will correspond to deflec-

tion and/or entrainment of the cross-flow by the jet interaction. Boundary

segment D-C is assumed located sufficiently downstream from the jet such

that the imposed cross-flow is recovered, i e., U2 (xI, x - B-C) - UM (-j•

* 13
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Z, xi

AB

a) 3DPNS Solution Domain Q.

~1 ->

b) Transverse Solution Domain Discretization URI.
e*

Figure 8. 3DPNS Computational Simulation Solution Domain.
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All other variables are assumed to exhibit vanishing normal derivatives

on Segment C-D. Figure 8b) is a graph of the discrettzatlon R
2 - UR2,

e
with the cross-flow distribution imposed on the boundary.

"h
The initial condition specification for q (xi(O),xg) on 1o = R2 x x1 (O)

defines the basic problem and consists principally of the jet cross-flow

velocity ratio and the character of the boundary layer region adjacent to

the plane of injection. As discussed at length in reference [17],lt is

necessary to augment the velocity component parallel to x1 by a small

constant background level to render the 3DPNS description nonsingular.

For a velocity ratio of X = U */U. - 8, the background level for ai(x 1, x)

= 0.2 Uj was determined acceptable and used for these studies. The jet

is defined to exist in a semi-circular region of 11o centered on the x1
" .axis, Figure 8. The imposed cross-flow U2 is assumed to exist only on the

boundary segments A-B-C of M, starting at a zero level at x1 = 0 and

proceeding through a boundary-layer type evolution until G2 = U (-j) at
some specified distance above the injection plane, say xI/D - 1.0. The

initial condition for a2 everywhere interior to M, and for Ua except on

segment A-B, is self-generated by the 3DPNS analysis by the action of the

continuity constraint numerical algorithm. The initial distributions for

k and e proceed through a similar boundary layer development.

Al gorithm Specification

Recalling the ordering analysis yielding the 3DPNS simplification, the

transverse plane momentum equations were determined to govern pressure dis-

tributions via a Poisson equation. The VSTOL problem specification presents

a significant challenge in that the complementary pressure solution is a

uniform constant since the inviscid flowfleld exterior to the domain 9 is

uniform. The particular pressure solution contains the entire pressure

distribution resulting from the action of generated Reynolds stress and

transverse plane velocity field distributions. However, no initial speci-

fication can be completed since there is no knowledge of the Reynolds stress

and velocity field distributions on the interior of 9 and near the injection

plane Z 0. This is not a critical issue with the transverse plane velocity

solution U since first-order effects are governed by the continuity equation.
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However, the first-order momentum equation for U, contains the x1-pressure
gradient as a source term, and an estimate is required to achieve the first

solution.

The resolution of this issue was accomplished in this study by definition
of a "virtual region" with an auxiliary pressure gradient computation, and
an interaction procedure involving multiple overlapping 3DPNS solutions.
The "virtual region" computation is the first 3DPNS solution generated on

the span 0 < x,/D < 1.0, i.e., marching from the injection plane a distance
of up to one jet diameter parallel to the jet. In this region it is assumed

" . that the momentum imparted to the jet flow by the injection process is main-
tained nominally constant in an overall integrated sense. The measure of

the x, momentum is the integral

ah d -~ e (26
m- r h d 1d (26)

JR

The last form of equation 26 is the sum of integrals over the two dimensional
plane of the discretizatlon, Figure 8b). An axial (xi) pressure gradient is
computed, from the change in momentum computed from equation 26, according

to the definition

1-(md(x,) m0) (27)

In equation 27, A. is the cross-sectional area occupied by the jet at the
injection plane, i.e., the area of the finite element domains interior to the

semi-circle defining the jet, Figure 8b).

The solution of equation 27 is a scalar estimate of the pressure gradient
parallel to the xi axis required to maintain the mean momentum of the jet.
The remainder of the 3DPNS algorithm is solved,as discussed in the previous

section, specifically including the particular pressure field which is written
onto an output file at preselected stations on 0 < XI/D < 0.5. In addition,
the entire virtual region 3DPNS solution dependent variable set is written

16
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onto the output file at a pre-determined axial station, say X1/D 0.25,

to serve as a new set of initial conditions for the subsequent interaction

solution.

The first interaction solution overlaps the virtual region solution on

0.25 < X,10 < 0.5, and extends further downstream parallel to the jet axis

to X1/O = 1.0. On the overlap region, the axial pressure gradient for the

U.1 momentum equation is constructed by differencing-the stored particular
pressure distributions from the virtual region solution. The last pressure
gradient, computed in this manner, is also extrapolated and used for the

3DPNS solution on the extended region 0.5 < X1/D < 1l.0. The first inter-

action solution particular pressure distributions are utilized directly in

the transverse momentum equation solutions, as well as written onto the

output file at preselected axial stations for use in the second interactie

solution.

The second, and subsequent interaction solutions are restarted at

X/O a 0.25, or further along the jet axis, using the most rect: . 3DPNS

solution particular pressure distributions to rmpute the pressure gradient

for the 01 momentum equation. Each subsequ.t titeractiaek solution is

carried progressively further downstream along the jet axis than the span

for which the pressure distributions have been computed from the previous

solution. Within each solution, howaver, the current particular pressure

solution is employed in a non-delayed manner in the transverse plane momentum

equations. In this manner, item d) of the 3DPNS analysis requirements is

met, assuming that the pressure gradient iteration procedure is convergent

- and yields flowfield predictions in agreement with experimental data.

Circular Jet Analysis

The principal requirement is to verify the developed 3DPNS procedure

for prediction of the near-field flowfield evolution of a circular cross-

section VSTOL jet at A = 8. Figure 9 summarizes the virtual region solutions

in terms of computed velocity vector distributions in the half-plane trans-

verse to the jet axis at X1/D - 0.25. Without the imposition of a pressure

gradient in the D, momentum equation, the applied crossflow ;nnediately

penetrates into the jet region, Figure ga). Even though the periphery of

the jet is well defined, this penetration is at variance with the experimental

data, Figure 7a).

17
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Computing the X, direction pressure gradient, according to equation 27,

and applying it yields the Uk velocity distribution shown in Figure 9b).
There occurs a pronounced turning of the crossflow towards the jet, and a
stagnation point is predicted about one-half diameter downstream of the

jet boundary in the wake region. However, substantial D2 velocities are

still predicted on the jet centerline. For comparison, deleting the

pressure gradient computation and defining a2 E 0 on the centerline within

the jet, yields the prediction shown in Figure 9c),which differs in only a

small way from Figure 9b).

These results indicate that the virtual region computation, with momentum

conserving pressure gradient, can produce an initialization for the subsequent

3DPNS solutions that is acceptable. The pressure gradient application is

crucial in that without it the crossflow always penetrates the jet. A

sequence of additional computations confirm that the principal action of the

pressure gradient is to counter-balance the strong turbulent mixing on the

"- upstream face of the jet. Without this balance, a large xi-derivative of U,

results, ie., Q/3x, << 0. Since Us = 0 and als/axB = 0 on the symmetry

centerplane and within the jet, the balancing of first order effects

controlled by the continuity equation must yield generation of a significant

velocity component U2 . The momentum conserving pressure gradient computation

serves to balance this coupling mechanism within the continuity equation.

Figure 10 summarizes the 3DPNS virtual region UI solution on 0.5 < X1/D

< 1.0, as generated using the momentum conserving pressure gradient. For

this solution, the U2 velocity component on the symmetry plane within the jet

was also set to zero. At XI/D = 0.5, there appears a nominal radial outflow

within the Jet region, a wake stagnation point about 0.5D downstream, and a

. beginning indication of entrainment from the wake, Figure 10a). There is

little qualitative change in the appearance of this transverse plane velocity

,. distribution on 0.5 < X1/D < 1.0, except for elimination of the rear wake

*i stagnation point.

The principal requirement of the solution of Figure 10 is to provide a

particular pressure distribution for the 01 momentum equation for the first

interaction solution. Since the data of Figure 10 exhibit some level of

qualitative agreement with the experimental data of Fearn et al, Figure 7,

the first interaction can be executed. For this and subsequent solutions,

19
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a) _Xi/D =0.5
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Figure 10. Summnary of 30PNS Virtual Region Solution, Transverse Velocity
Distributions, 02 0 on Symmnetry Plane, Circular Cross-Section
VSTOL Jet, x * 8.
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-2 on the synmetry plane within the jet is released and computed assuming

a vanishing normal derivative boundary condition. Figure 11 summarizes the

first solution as transverse plane velocity distributions. The boundary of

the jet is clearly defined at.X j/D = 0.5, and the jet deflection action on

the crossflow is quite evident. Particularly encouraging is the almost

,* purely transverse outflow velocity us, computed in the foreward half of the

jet region on 0.5 < X1/ < 1.0. This action is in quite good qualitative

" agreement with the data, Figure 7a). Also, this solution gives almost no

evidence of a roll-up of a secondary vortex is indicated by the data.

However, intrusion of a relatively large component of 92 occurs, interior

to the jet at Xj/D = 1.0, which does not agree with the indications of the

experimental data.

Figure 12 summarizes the second interaction solution on 0.75 < X1/D

< 1 .25. A rather substantial increase in entrainment action is indicated

at X1/D - 0.75, in comparison to Figure llb), and a nominal transverse

outflow for U3 is maintained on the jet interior. Further, a wake region

stagnation point has reappeared which persists to X1/D = 1.25. However, the

U2 mass flux through the jet core region persists at X1/D - 1.0, and is even

more pronounced at Xj/D - 1.25.

These 3DPNS predictions indicate that the lack of knowledge regarding

the detailed distribution of axial pressure gradient in the 91 momentum

equation is a constraint. Even with this limitation, however, a substantial

quantitative assessment of a plausible nearfield evolution of the crossflow

has been generated. In particular, Figure 13 is a graph of pressure

coefficient distribution Cp 1 on the plane X3/D = 0.75.

Assuming that exterior to the jet region this pressure distribution is

nominally imposed through the crossflow boundary layer, the general distribu-

tion of isobars is in qualitative agreement with data [10].

In particular, the extremum level on the lateral downstream side of

the jet is due directly to the strong entrainment velocity field predicted

by the 3DPNS solution and confirmed by many experiments. Further, Figure

13b) is a plot of isovels of the jet direction velocity distribution a1 .

The initially semi-circular contours have been noticeably bowed laterally in

the direction perpendicular to the imposed crossflow. This is also in good

qualitative agreement with data, cf. Figure 4a), and is solely the result of

21
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Figure 13. Second Interaction Solution Fields, Circular Cross-Section
VSTOL Jet, A *8, Xi/D *0.75.
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6-7. the induced transverse plane velocity field U.

As discussed, the pressure field computed in the 3DPNS algorithm responds

to first-order to the Reynolds stress distributions, coupled to lower order

with the transverse velocity field, see equation 11. The accuracy of the

3DPNS solution depends critically therefore on the stress distributions.

Figure 14 summarizes the second interaction solution prediction of the

Reynolds normal stress distributions at Xj/D - 0.75. All three components

exhibit profile contours geometrically similar to the 91 isovel distribution,

with the peak levels coincident with the extremum gradients in U1. Figure

15 graphs the corresponding 3DPNS solution for Reynolds shear stress distri-

butions at X1/D - 0.75. The extremum gradients in WjiT and Wju T are parallel

to the corresponding transverse coordinate direction UV as expected. It

would be highly informative to have experimental data for comparison of

these predictions.

SUMMARY AND CONCLUSIONS

A three-dimensional parabolic Navier-Stokes numerical solution algorithm

has been analy ed for prediction of the nearfield flow development of a VSTOL

jet in subsonic crossflow. The essential aspects of algorithm definition,

with regards to initial and boundary condition specifications, has been

summarized. A momentum conserving pressure gradient computation has been

developed to complete the problem definition and facilitate problem initial-

ization. A sequence of overlapping interaction solutions has been evaluated

for prediction of a circular jet at X a 8.0. The results of the 3DPNS pre-

dictions have compared qualitatively with the sparse available experimental

data. It is crucial that quality data be acquired to permit quantitative

assessment of the results of this analysis procedure.

25
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a) Axial Normal Stress iuj~j

b) Transverse Normal Stress uT2  _______

c)Transverse Normal Stress OPT-

Figure 14. Second Interaction Solution Reynolds Normal Stress Distributions,
Circular Cross-Section VSTOL Jet, X S.8 X /D *0.75.
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a) Reynolds Shear Stress Vru2

.05

b). Reynolds Shear Stress 01ru-9

c) Reynolds Shear Stress u2u

Figure 15. Second Interaction Solution Reynolds Shear tress
Distributions. Circular Crost-SectionVSTOL J11t, X -8, X1/D - 0.75.
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